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Abstract—Bombyx mori, the silkworm species that feeds
on mulberry leaves, produces the most prevalent variant of
silk worldwide. Unfortunately, mulberry trees suffer from leaf
diseases that spread quickly and cause significant losses in
production. Identifying diseases by experts on large scale is time-
consuming and often inaccessible for rural people. Despite recent
advances in deep learning and image processing, State-of-the-
art models tend to be computationally expensive and must be
used online. This study makes use of a regional dataset that
comprises of mulberry leaf images captured from Rajshahi, the
principal sericulture region in Bangladesh, to align with the
environmental factors of the country. Firstly, we present an
extremely efficient and lightweight approach enhanching a pre-
trained MobileNetV2 model to classify among three categories of
leaf photos: disease free, leaf spot, and leaf rust. Upon comparison
with base MobileNetV2 and existing works on this dataset, this
model exhibited efficacy in accuracy, recall, precision, and F1-
score, attaining remarkable values of 98.63%, 98.53%, 98.63%,
and 98.63%, respectively after 5-fold cross-validation. Then,
we performed an explainability analysis utilizing Grad-CAM
visualization to validate the capability of our suggested method.
We also assessed the impact of preprocessing techniques on classi-
fication outcomes. The proposed architecture, having only 145K
parameters, remains surprisingly lightweight and outperforms
the base MobileNetV2 model in our experiments. According to
the results, our suggested approach correctly identifies mulberry
leaf diseases, supporting sericulture growth in rural areas.

Index Terms—mulberry leaf, classification, lightweight, ex-
plainable, deep learning, MobileNetV2, Squeeze-and-Excitation,
CNN

I. INTRODUCTION

Silk is a structural protein generated, released, and trans-
formed into thread by numerous arthropods for external use
outside of their body [1]. Traditionally, textile silk is produced
using a kind of mulberry silkworm called Bombyx mori,
prevalent in China that was domesticated from its native
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ancestor, Bombyx mandarina [2]. Evolved in China from B.
mandarina around 4600 years back, B. mori silkworm lives on
mulberry leaves [3]. The mulberry tree, scientifically known
as Morus alba, is a deciduous plant native to northern China
that has been farmed for generations all over the world [4].
Mulberry trees continue to be commercially and environmen-
tally important due to their numerous applications. Mulberries
are edible fruits that can be eaten raw or transformed into a
variety of items, including juices, jams, and wines. Besides, it
is a nutrient powerhouse consisting of vitamins, minerals, and
bioactive phenolic chemicals with antioxidant properties. [5],
[6]

A commonly used term related to silk goods is Sericulture,
which refers to the extensive process of cultivating mulberry
trees, nourishing silkworms by feeding leaves, maintaining and
harvesting of the cocoons they form, and transforming them
into textile silk [7]. During this procedure, diverse clinically
significant byproducts get produced, that illustrates the wide
array of silkworm applications [8]. Sericulture is significant
not only economically, but also culturally, historically, and
ecologically in many civilizations around the globe. Millions
of people rely on the silk industry for their livelihood. His-
torically, Silk manufacturing is believed to have originated in
ancient China around 2700 BCE [7].

The sericulture industry in Bangladesh, as a prospective
earning sector, holds a tremendous potential to create liveli-
hoods and eliminate unemployment for a large number of
the country’s population, particularly in rural regions. This
industry has plenty of room to grow if it receives the
right attention and assistance from the government and non-
governmental groups. However, it is currently battling to exist
due to issues such as capital, infrastructure, mulberry diseases,
limited access to newer technologies, marketing challenges,
and so on. The majority of these problems can be remedied
by properly raising silkworms. However, it requires the stable
and effortless cultivation of mulberry plants, since their leaves
serve as the only food source of silkworm Bombyx mori. [9].

Despite growing year-round, mulberry leaves are prone to
diseases caused by various microorganisms, as well as serious



pests including sap suckers and defoliators. These issues cause
a 12-25% reduction in leaf production [10]. Besides, leaf
spot, powdery mildew, and rust are fungal diseases that can
reduce the nutrient composition of the leaves. Supplying these
lower-quality leaves creates a negative impact on silkworm
growth and, eventually, the silk manufacturing business. It is
unfortunate that rural farmers in under-developed countries
like Bangladesh cannot afford to have these diseases detected
manually, especially in large fields. Considering these factors,
the use of automated, reliable and accessible disease detection
systems is crucial, since they can increase the rate of mulberry
production and, in turn, benefit the silk industry.

Deep learning, a contemporary subdomain of machine learn-
ing, has become a potent instrument for image processing and
object detection systems. Attaining success in other domains, it
has lately entered the agricultural sector, allowing for the quick
identification of diseases in crops like maize, rice, etc. How-
ever, deep learning approaches for mulberry disease detection
are still remained under-explored, mostly owing to the absence
of publicly accessible datasets. The Mulberry Leaf Dataset
[11], [12], which includes leaf photos from the Rajshahi
region of Bangladesh, fills this void by providing a resource
that is consistent with local ecological conditions. Most of
the existing approaches, however, require large computational
resources to reach an acceptable performance, which makes
practical deployment difficult. To mitigate these issues, the
following key contributions have been made in this paper:

1) An extremely lightweight and efficient multiclass classi-
fier was developed by altering pretrained MobileNetV2
to identify leaf spot, leaf rust, and disease-free leaves.

2) Performance and complexity was compared to baseline
MobileNetV2 and other existing techniques to demon-
strate the effectiveness of our proposed architecture.

3) Grad-CAM visualization was utilized in order to verify
model predictions and ensure explainability.

4) The impact of a preprocessing technique on the Mul-
berry Leaf Dataset [11], [12] was assessed alongside.

Section II explores contemporary research works in this field,
covering the principal aspects of this study. An in-depth de-
scription of the proposed approach has been presented in Sec-
tion III. Section IV breaks down the description and analysis of
dataset, results derived from the experiments, and performance
comparison with existing works. Section V contains discussion
and potential scope of future improvements.

II. RELATED WORKS

Researchers have been leading the way in developing ad-
vanced techniques for automatically diagnosing and catego-
rizing plant diseases in the field of plant pathology. Recent
studies have shown the feasibility of using CNN to accurately
detect plant diseases from leaf images. For example, Eunice et
al. performed efficient plant disease identification on popular
PlantVillage dataset [13] by fine tuning renowned pretrained
models VGG-16, InceptionV4, ResNet-50, and DenseNet-121
[14]. A series of research work was carried out on disease
recognition in tomato leaves. The work of Prajwala et al.

[15], Huang et al. [16], Agarwal et al. [17], Hailin et al.
[18] are noteworthy. For similar task, a CNN model built on
Residual Attention was applied after preprocessing with a type
of Retinex technique, which achieved about 89% accuracy on a
dataset of 8616 images [19]. Among other crops, maize disease
classification has gained the attention of a lot of researchers
[20]–[22]. An array of supervised techniques including SVM,
Decision Tree, KNN, Naive Bayes, Random Forest were
applied in the work of Panigrahi et al. for maize plant disease
detection, among which the Random Forest approach yielded
the highest accuracy of 79.23% [23]. Another notable work
based on Faster R-CNN was done for accurate maize leaf
disease detection, that achieved an accuracy of 97.23% [24].
Among other crops, apple, orange, rice have grabbed the
attention of scholars, which is evident in several works based
on CNN [25]–[29]. However, there are only a limited number
of studies on deep learning based mulberry leaf diseases. One
of the major reason behind this is the lack of sufficient datasets.
A noteworthy work on mulberry leaf diseases has been done
by Salam et al., in which they collected a set of 1,091
mulberry leaves from the north-western part of Bangladesh.
They proposed a lightweight model based on MobileNetV3,
which achieved a maximum accuracy of 96.4% [12]. In
another earlier work, they have presented an explainable ap-
proach for accurate detection of mulberry leaf diseases, which
substantially reduced the trainable parameters and complexity
of the model [11]. After reviewing all this works, there is
a high need for developing a more robust, lightweight, yet
efficient mulberry disease detection approach that is applicable
in low-powered devices, in order for working offline, which
is necessary for remote people in underdeveloped countries
like Bangladesh. By advanced preprocessing techniques, the
existing pretrained models can be further optimized to fulfill
our goals. Among preprocessing techniques, Retinex-based
image enhancement is quite popular. Retinex theory was
first introduced by Edwin H. Land and John J. McCann in
1971 [30]. The Retinex technique enhances digital image
quality by mimicking the human visual system’s capability of
perceiving color and details under varying lighting conditions.
The Multiscale Retinex (MSR) approach is an extension which
is especially useful for low-light or high-contrast images,
making them visually more natural and informative [31]. In
our work, we have utilized the Squeeze-and-Excitation (SE)
module [32] to enhance a pretrained MobileNetV2 model. The
SE module re-weights feature map channels by incorporating
Global Average Pooling (squeeze) and a lightweight fully-
connected network (excitation) to learn channel-wise weights,
emphasizing important features. It helps to reduce trainable
weights with a minimal footprint. Besides, we assessed how
the precision changes after applying a popular preprocessing
technique called MSRCR (Multi-Scale Retinex with Color
Restoration), which is an extention of MSR [33].

III. METHODOLOGY

The proposed architecture contains a Modified Mo-
bileNetV2 that also integrates a Squeeze-and-Excitation (SE)



module at the last stage of the feature extractor. Subsequent
portions provide a comprehensive description of these compo-
nents.

Fig. 1: Block diagram of SE module [32]

A. Squeeze-and-Excitation Module

The SE module has been adopted directly from the work
of Jie Hu et al. [32]. It improves a network by automatically
calibrating channel-wise features. It creates a global context
by ”squeezing” spatial dimensions and the ”excitation” part
reweights channels according to their importance. Fig. 1
illustrates the block diagram of the SE module. If SE input
is x = [x1, x2, ..., xc], where xi represents the features of
ith channel having spatial dimensions H × W , then spatial
information is at first squeezed into z by using global average
pooling, where cth channel output, zc is given by (1).

zc = Fsq (xc) =
1
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H∑
i=1

W∑
j=1

xc (i, j) , (1)

p = Fex (z) = σ
(

w
′′
δ
(

w
′
z + b

′
)
+ b

′′
)
, (2)

(3)

In the excitation part, if w
′
,b

′
and w

′′
,b

′′
denotes the weights

and biases for the two fully-connected layers, then excitation
output should be p, as given by (2). Here, σ, δ denote sigmoid
and ReLU functions, respectively. Finally as in Equation 4, the
SE output, se is the channel-wise multiplication of x and p.
[32]

SEc (xc) = pc · xc (4)

B. Modified MobileNetV2 Architecture

The original MobileNetV2 in [34] has been chosen because
of its efficient classification performance and relatively small
complexity. Its key element is an inverted residual structure,
which utilizes pointwise and depthwise separable convolu-
tions.

Fig. 2 highlights our proposed modifications. We used a
TensorFlow implementation which was pretrained with Ima-
geNet weights. It greatly benefits the new architecture since

Fig. 2: Classification using proposed modified MobileNetV2
architecture

the diverse feature extraction capability is replicated. However,
to further reduce the complexity, subsequent stages after 7th

bottleneck block (and ReLU) were eliminated. This change
was the outcome of our numerous experiments for simplifying
the model. To compensate for this alteration, an SE module
was attached, followed by a GAP layer to properly weight
its feature channels. Because of the existing pair of fully-
connected (FC) layers in the SE module, no further FC layers
were introduced other than the final output layer, which con-
sisted of three units for our particular classification purpose.
Here, softmax activation was applied for producing probability
vectors.

H(y, ŷ) = −
C∑
i=1

yi log(ŷi) (5)

The loss function utilized in the proposed model was categor-
ical cross entropy which can be represented by (5) where, yi
and ŷi are the true and predicted probability distribution for
class i.

IV. RESULTS & DISCUSSION

A. Description of Dataset

The Mulberry Leaf dataset [11], [12] comprises 1,091
mulberry leaf photos captured using a camera in natural light-
ing conditions from mulberry fields in Rajshahi, Bangladesh.
There are 440 normal, 489 leaf rust, and 162 leaf spot photos.
Each photo having a resolution of 4,000×6,000 pixels was
annotated by a sericulture expert in collaboration with the
Bangladesh Sericulture Development Board (BSDB). Fig. 3
shows some samples taken from each class. The photos have
uneven lighting, and some leaves have shadow. At the first
glance, it is hard to distinguish between Leaf Spot and Leaf
Rust photos.

The sample distribution in the dataset is illustrated in Fig.
4, which exhibits a strong class imbalance. Due to the limited

(a) (b) (c)

(d) (e) (f)

Fig. 3: Samples from dataset; (a-b) Disease Free, (c-d) Leaf
Rust, (e-f) Leaf Spot



Fig. 4: Class distribution in dataset

number of Leaf Spot photos, data augmentation became neces-
sary. During cross-validation, we augmented images for each
class from the training splits, in order to make the training
size to around 7500, and thus mitigating the class imbalance
problem. Random horizontal flip, and rotation by 90◦, 180◦,
and 270◦ are were applied, along with random brightness
variation up to 10%.

B. Preprocessing Techniques

Effective preprocessing is critical for maximizing the effi-
cacy of deep learning models, particularly in datasets contain-
ing inherent noise. We applied minimal image enhancements
for assessing the effect after model training. In our experi-
ments, MSR (Multi Scale Retinex) was used to regulate the
dynamic range, along with color restoration. A channel-wise
gamma transformation was then applied as an improvement.
Following the aforementioned procedures, the photos have
consistent color and detail, even in shadowy and dark regions.
Fig. 5 shows examples of both untouched and preprocessed
photos.

C. Experimental Setup

All the tests were done on Kaggle using a machine with an
NVIDIA P100 GPU and 16 GB of GPU memory. TensorFlow,
Keras, and other similar packages were used extensively to
make the training and testing process straightforward to run.

(a) (b) (c)

(d) (e) (f)

Fig. 5: (a-c) No preprocessing; (d-f) MSRCR enhanced

Table I shows the exact setup that was used to train the models.
Adam (Adaptive Moment Estimation) optimizer was employed
due to its faster convergence. For evaluating the proposed

TABLE I: Training configuration

Parameter Value
Optimizer Adam

Learning rate 0.00001
Batch size 64

Epoch 80

model, we made use multiple metrics, namely, Precision,
Accuracy, Recall, and F1 Score, defined by equations (6)-(9).

Precision =
True Positive

True Positive + False Positive
(6)

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Recall =
True Positive

True Positive + False Negative
(8)

F1 = 2× Precision × Recall
Precision + Recall

(9)

D. Comparison of results

The images were resized to 224×224 for ensuring compati-
bility with the models. We employed five-fold stratified cross-
validation technique, and evaluated the performance of our
modified architecture and the base MobileNetV2 model. Fig.
6 illustrates the transition of loss in addition to accuracy during
the training process. The base MobileNetV2, after 40 epochs,
started to overfit and its validation loss started to increase.
Begining with a lower value of nearly 0.7, its validation
accuracy remained quite consistent after 30th epoch.

Table II presents a side-by-side comparison of the test
results. Surprisingly, preprocessing approaches had barely any
impact on both of the architectures. One probable explanation
might be that majority of the dataset photos already have
adequate detail and contrast for feature extraction. Fig. 7

(a) (b)

(c) (d)

Fig. 6: Loss and accuracy curves for (a-b) MobileNetV2 and
(c-d) Proposed method



(a) (b)

(c) (d)

Fig. 7: Aggregated confusion matrix for (a) MobileNetV2, (b)
Proposed modified model; ROC curves for (c) MobileNetV2,
(d) Proposed modified model

depicts the mean confusion matrices and ROC curves for
comparison. Our proposed method gave comparable scores
with the baseline MobileNetV2, especially for Leaf Rust.
After all, it is evident from the results that our proposed
architecture matches the base MobileNetV2 model in terms
of all performance metrics.

TABLE II: Comparison of cross-validation results between
proposed method and base MobileNetV2

Metric No preprocessing Preprocessed
Name MobileNetV2 Proposed MobileNetV2 Proposed

Accuracy 98.63 98.63 98.53 98.63
Precision 98.63 98.63 98.53 98.62

Recall 98.53 98.53 98.44 98.35
F1 Score 98.63 98.63 98.53 98.63

When comparing computational complexity to existing stud-
ies, our model ranks first, as shown in Table III. The closest
performance was obtained by PDS-CNN [11]. Our updated
model surpasses their scores on this dataset, but has a trainable
parameter count of around half of the nearest work [12].

TABLE III: Result comparison with existing works

Method Accuracy Precision Recall F1 Param.
(%) (%) (%) (%) (million)

PDS-CNN [11] 95.05 93.20 92.80 93.00 0.53
Salam et al. [12] 96.40 97.00 96.40 96.40 0.30

Proposed 98.63 98.63 98.53 98.63 0.14

E. Grad-CAM Visualization

The Grad-CAM outputs for all three classes are presented
in Fig. 8. It is apparent from the generated activation heatmaps

that our method focuses more on the affected area of the leaves
during classification.

(a) (b) (c)

(d) (e) (f)

Fig. 8: Grad-CAM visualization for proposed method (a-c)
Input images and (d-f) Generated heatmaps

V. CONCLUSION

An extremely lightweight model for mulberry leaf disease
detection was proposed in this study. For enhancement, a
pretrained MobileNetV2 model was altered and SE module
was integrated. After comparing the experimental results with
the base MobileNetV2 model, our method showed superior
scores in all the considered metrics. With a tiny file size of
568.45 kilobytes and small parameter count of 145,523 our
suggested architecture fulfills the key objectives, and proved to
fill the gap of a very low-complex, efficient detection method
for mulberry leaf diseases. The lightweight nature should
definitely help the remote farmers to boost their mulberry
cultivation. Besides, a popular preprocessing technique was
applied on the dataset for assessment, which yields in minimal
alteration in classification performance. Future scopes include
actual mobile implementation, and applying the proposed
architecture on other crop datasets in order to further evaluate
its generalization capability.
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