
Brain Tumor Segmentation with Efficient and
Low-Complex Architecture Using RCNN and

Modified U-Net

Ananta Raha(Q), Farjana Parvin, and Tasmia Jannat

Department of Computer Science and Engineering,
Rajshahi University of Engineering & Technology, Rajshahi, Bangladesh

ananta.raha.99@gmail.com(Q), farjana@cse.ruet.ac.bd,

jannat22tasmia@cse.ruet.ac.bd

Abstract. In medical applications, the boundless potential of image
processing utilizing Deep Neural Networks has grabbed the interest of
researchers. Brain tumor segmentation, which is a crucial piece of task,
determines the location and extent of tumor areas. Numerous techniques
for segmentation have been suggested by researchers. One significant dis-
advantage of the existing architectures is the presence of a large number
of trainable parameters. It makes the system complex, expensive to train,
and unsuitable for integration in low-powered devices. In this paper, we
present an efficient, two-stage approach for the effective segmentation of
brain tumor from MRI images using RCNN and a modified U-Net. The
proposed system was evaluated and verified using a publicly available
Figshare dataset [1]. The system is low-complex with small number of
parameters compared to other existing architectures. It was tested and
compared to the original U-Net, and despite having a large decrease in
total trainable parameters, it obtained a comparable performance with
an accuracy of 99.78%, IoU of 89.76% and a dice score of 94.53% in our
experiments.

Keywords: Complexity reduction, Brain tumor, Segmentation, Low-
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1 Introduction

Machine learning is a prominent branch in the field of artificial intelligence. It
enables machines to analyze provided data and learn as they receive additional
data over time. In this way, machines can automatically learn and improve grad-
ually by utilizing data, without the need for being programmed explicitly. It has
found remarkable possibilities across a wide range of sectors like, image process-
ing, medical imaging, bioinformatics, autonomous vehicles, business decisions,
market analysis, etc. A more sophisticated type of machine learning is deep
learning. Deep learning models, from a perspective, are built systems influenced
by biological brain. [2]. More formally, Deep learning enables computational
models made up of multiple layers of processing to learn data representations
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with varying degrees of abstraction. [3]. In the area of image processing, CNN,
or Convolutional Neural Network, is one of the most sophisticated architectures
in deep learning. CNN is a type of feedforward neural network that can ex-
tract features from input data using convolution architectures. [4]. It is made
up of a sequence of convolutional layers linked to an array of hidden layers. The
fundamental goal of the convolutional layers is to learn feature representations
through the inputs. RCNN, which stands for Region based Convolutional Neural
Network, can be seen as a combination of CNN and region proposals [5].

At present, image segmentation and object detection are two critical tasks in
computer vision, with numerous potential applications including medical image
analysis, scene understanding, image compression, etc. Segmentation is also a
basic step in any medical image analysis for disease pattern recognition. A brain
tumor, one of the most dangerous conditions, is an abnormal development of
cells in the human brain. Brain tumor segmentation is a fundamental task that
enables to separate the tumor area in a medical image for further study. For
figuring out the precise location and size of the tumor, reliable brain tumor
segmentation is necessary [6].

Over the years, several techniques for performing the segmentation task have
been developed and established by different researchers. In image segmentation,
certain architectures have recently achieved state-of-the-art performance. How-
ever, most of the architectures are complex in the sense that they involve an
extensive number of training parameters. It makes them not only laborious to
train and integrate but also increases the execution time of the task. Many of
them allow using a pre-trained model in their workflow like Mask-RCNN [7].
But most of the popular pre-trained models have a huge number of training
parameters, which also adds more to the complexity. Models such as AlexNet
[8], ResNet [9], VGG16 [10], and others, for example, have a high number of
parameters. These aspects make it challenging to fit them into compact devices
with limited resources.

In our work, we aim to reduce the complexity of the segmentation process,
while still maintaining considerable performance and accuracy compared to other
existing architectures. The main idea here is that we make use of a low-complex
RCNN architecture from [11] to classify the regions that contain the tumor area.
The most appropriate region that covers the tumor area is selected based on
the probability output and fed into the next stage. The next stage incorporates
a lightweight implementation of U-Net architecture ideal for the segmentation
task which is a modified version of the original U-Net [12]. This modification is
aimed to lower the total number of parameters in our complete segmentation
architecture. In the proposed approach, the system becomes less complex and
more efficient with minimal loss of accuracy.

2 Literature Review

Several works on image segmentation were reviewed from a number of papers.
RCNN (Region based Convolutional Neural Network) was introduced in [5],
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which proposed a better approach to object detection. It achieved high object
detection performance for its time. However, it had some limitations, such as an
expensive multistage training pipeline, slow object detection, and so on. The au-
thor of [5] further improved the architecture in his subsequent work [13] named
as Fast R-CNN, which eliminated some of the limitations of the previous work.
In [14], the author upgraded the system even further by swapping the prior re-
gion proposal system with a new region proposal network that can be trained
efficiently with the detection network. It was also limited to object detection
task without segmentation, but it performed impressively. Several segmentation
methods have been suggested over the years, such as Thresholding [15], Edge-
based method [16], Region growing method [17], Watershed method [18], [19]
and so on. Following that, substantial progress was made in image segmenta-
tion in [7] which can also generate object masks of detected objects in addition
to the object detection task. It is a robust framework that allows any of the
pre-trained models to serve as the backbone. U-Net, appeared in [12] is another
remarkable architecture for performing accurate and rich medical image segmen-
tation. U-Net achieves great performance and efficiency in the segmentation of
medical images as shown in [12], [20] and also its variants in [21], [22], [23]. All
of these architectures share one problem. Due to the large amount of trainable
parameters available, they all require a very high system specification. For ex-
ample, U-Net has nearly 34 million parameters for a similar configuration in our
experiment. Researchers have proposed many techniques to reduce the count
of parameters involved in segmentation without significantly reducing accuracy,
such as in [24], [25] and so on. A recent work involving the brain tumor detection
task with a low-complex architecture based on RCNN was successfully presented
in the paper [11]. According to [11], it decreases the execution time for object
detection and employs a low-complex model called Two-Channel CNN from the
author’s previous work, presented in [26], where the model was utilized to per-
form classification between two distinct types of brain tumor, called Meningioma
and Pituitary tumors. In comparison to other existing architectures, the model
has about 1,00,82,692 parameters [11] which is relatively reduced. However, this
low-complex approach does not perform any segmentation task on the tumor
MRI images. It only detects the tumor regions and outputs a bounding box or
rectangle around the tumor-affected area. In short, it performs localization of
the tumor in the MRI image with no segmentation. Our proposed architecture
contributes to this work of [11] by extending it to the pixel-wise, precise segmen-
tation of tumor area, while still preserving the key purpose: keeping the overall
system less complex by reducing the total amount of trainable parameters in-
side. The proposed approach is basically divided into two sections: tumor region
selection and segmentation. In the tumor region selection part, we use a nearly
identical architecture as in [11]. Then we use a modified version of U-Net formed
through the reduction of the number of blocks, filters and trainable parameters
from the original version presented in the paper [12]. The optimal number of
blocks and filters was determined by testing with different configurations in our
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tests. Despite having a very small number of parameters, the proposed model
has shown comparable accuracy and performance in our experiments.

3 Methodology

The two separate processes that make up the proposed architecture are region
selection and mask generation. The Two-Channel CNN [11] serves as the core
for the region selection, and a modified U-Net configuration is used for mask
generation. This section describes these architectures and dataset processing.

3.1 Two-Channel CNN

The concept of using several channels and reducing hidden layers in order to
minimize complexity has been evaluated in [27]. Similarly, to reduce complexity
in our proposed architecture, we use the Two-Channel CNN from [11] where
it serves as a feature extractor for the low-complex RCNN. Fig. 1 depicts the
abstract diagram of the model from [11].

Fig. 1: Block diagram of the Two-Channel CNN [11]

According to [11], channel A has two convolutional layers denoted by A1 and
A2. A max pooling layer is placed in between them. A1 has a 3×3 filter and the
pooling layer size is 3×3. The result is then passed on to A2 which also has a
3×3 filter. Channel B is slightly different than the earlier and it is made up of a
convolutional layer B1 and a max pooling layer. In the work presented in [11],
the filter size of B1 is 13×13 and dimension of the pooling layer is 3×3. But
for our proposed region selector, we fixed the filter size to 9×9, since it showed
better result in our experiments. These two channels are then concatenated and
linked to two fully-connected layers, which are followed by a final softmax layer
that is effective for classification task. The first layer that is fully connected has
100 neurons and the second one has 50 neurons which is similar to configura-
tions stated in [26]. Previously in their work [26], Two-Channel CNN was used
to classify Meningioma tumors and Pituitary tumors effectively. In our experi-
ments, we tested it for the classification of tumor region and non-tumor region,
which showed outstanding performance and accuracy in terms of total parameter
count. Hence, we decided to use this Two-channel CNN in the region selection
stage of our proposed model for the classification between tumor and non-tumor
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regions. One major difference here is that we do not use any bounding box re-
gressor in the proposed method unlike in [5], since it adds to the complexity
and requires additional training tasks. For proper segmentation, the entire re-
gion needs to be contained inside the bounding box. Otherwise, a minor portion
of the region might be cropped before the segmentation mask. To mitigate this
issue, the bounding box was given a fixed 4-pixel padding to better fit the tumor
region inside. While this affects the detection precision, the segmentation task is
significantly improved without the additional cost of a bounding box regressor.

3.2 Modified U-Net

The original U-Net introduced in [12] had a contracting way on left side and
also an expansive way on right side, each of which has 4 blocks. Each block in
the contractive way employs double 3×3 convolutions, followed by ReLU and
one max pooling of 2×2. At each step of down-sampling, the count of feature
channels is multiplied by 2. Each block in the expansive way starts with feature
map up-sampling, then 2×2 convolution that reduces the number of channels
in half, concatenating with feature map received from the contracting way, then
double 3×3 convolutions and one ReLU. At the very last layer, a 1×1 convolution
is used [12].

Fig. 2: U-Net architecture from [12]

We modified the U-Net architecture to have 3 blocks in the contractive and
expansive paths instead of 4 blocks each, described in [12]. It is illustrated in Fig.
3. This configuration is selected based on the result of our experiments reflected
in Table 4, which shows better overall results in terms of parameter count and
performance. In this way, the number of filters is decreased and the count of
parameters is also reduced by a significant amount. Based on these results, we
are using this modified version for the segmentation task, in the mask generator
phase of the proposed methodology.
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Fig. 3: Modified U-Net architecture in proposed method

3.3 Proposed Architecture

The proposed architecture is divided into two stages, region selector and mask
generator, for the selected region. The block diagram of the proposed approach
is shown in Fig. 4.

Fig. 4: Block diagram of our complete proposed architecture

Region Selector The workflow of the region selector is depicted in Fig. 5.
Selective Search algorithm, described in [28] was used to produce all the regions.
Then they are resized to size 64×64 and are fed to the Two-Channel CNN
which classifies the regions containing tumor and healthy regions. Because of
the applied Softmax activation in the final output layer, it gives the probability
output. The most appropriate region to have tumor area is selected from this
stage. Its bounding box co-ordinates are also recorded.

Mask Generator The selected tumor region of size 64×64 is then fed to the
input of the modified U-Net. It gives a 64×64 sized output mask of the region,
which is then resized back to its original size according to the previously-saved
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Fig. 5: Workflow of the region selector

Fig. 6: Workflow of the mask generator

bounding box coordinates. After binary thresholding operation, the region mask
is placed on the full 512×512 zero-valued image to form the complete final mask
of the MRI image. Fig. 6 illustrates the workflow of the proposed mask generator.

3.4 Dataset Collection and Preprocessing

We used a dataset [1] which was also used in [11]. The dataset contains a total of
3064 MRI image slices (T1 contrast) from 233 patients. The dataset is divided
into three classes: glioma, meningioma, and pituitary tumors. It contains 1426
MRI image samples from 92 individuals with Glioma, 708 MRI image samples
from 82 victims with Meningioma, and 930 MRI image samples from 62 cases
with Pituitary tumors. MRI slices are available in three orientations: axial, coro-
nal, and sagittal. Fig. 7 depicts some examples. All of these images are grayscale
and 512×512 pixels in size. We have only used the Meningioma tumor images
from this dataset for our experiments since our main purpose is the segmenta-
tion task rather than the classification of tumor types. 5% of the Meningioma
samples are set aside for testing. For the training part, we had to pick around
256 regions randomly from the generated regions for each of the MRI images
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(a) Meningioma (b) Glioma (c) Pituitary

Fig. 7: Samples from the dataset [1]

using selective search algorithm. The ground-truth coordinates of the bounding
box were calculated from the true mask of each MRI image. Hence, the regions
are divided into two classes: one is tumor region covering the tumor area and
another is non-tumor region. The class labeling of the regions is executed based
on the IoU of the bounding box and rectangular region. During random region
selection for each image, it is very important that the class distribution between
the tumor-affected and non-tumor regions are balanced. Since the number of
tumor-affected regions generated was lower than in the case of non-tumor re-
gions, we had to consider regions with IoU < 0.3 as tumor-negative, IoU ≥ 0.7
as tumor-positive regions. The regions having an IoU between 0.3 to 0.7 are con-
sidered positive if the ground-truth bounding box is inside the generated region.
The conditions and considerations are illustrated in Table 1.

Table 1: Label considerations for generated regions based on IoU

Condition Region label

IoU < 0.3 No tumor
0.3 ≤ IoU < 0.7, ground truth region not inside No tumor
0.3 ≤ IoU < 0.7, ground truth region inside Tumor region
IoU ≥ 0.7 Tumor region

4 Result and Discussion

4.1 Experimental Setup

All of the tests are executed on Google Colab and Kaggle. All the results are
based on the outputs from Kaggle using GPU P300 mode. On Local machine,
Python, VS Code and Jupyter Notebooks are used for primary code generation
and execution.
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4.2 Classification of Tumor Regions

In our proposed region selector, Two-Channel CNN is used for the classification
of tumor regions and healthy regions. From 673 Meningioma MRI images, a total
of 172,288 regions were generated for the input. The regions were labeled using
Table 1. They were preprocessed and resized to 64×64 before feeding into the
region selector. 80% of the regions are used for actual training, and remaining
20% for validation of the classifier. The performance parameters listed below are
used for evaluation:

Sensitivity =
True Positive

True Positive+ False Negative
(1)

Specificity =
True Negative

True Negative+ False Positive
(2)

Precision =
True Positive

True Positive+ False Positive
(3)

Accuracy =
True Positive+ True Negative

True P.+ True N.+ False P.+ False N.
(4)

F1 Score =
2 ∗ Sensitivity ∗ Precision

Sensitivity + Precision
(5)

The list of training parameters for region classification is provided in Table 2.
The model was trained for up to 100 epochs, when we stop iteration since its
validation accuracy and validation loss reached a satisfactory value. In our test,
the initial accuracy was low, but it increased gradually up to a validation accu-
racy of 98.63%, having a final loss value of 0.0443. The training and validation
curves are displayed in Fig. 8.

Table 2: Training parameters for region classification

Training parameter Value

Learning rate 0.000001
Mini batch size 16
Data augmentation No
Learning algorithm ADAM
Epochs 100

Table 3, which exhibits the classifier’s performance on the test images, shows
that the region classification task functions well. The segmentation architec-
ture’s overall performance depends mostly on the classification task, and the
result is satisfactory.
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Fig. 8: Accuracy and loss curve for region classification

Table 3: Obtained result for region classification

Parameter Obtained value

Sensitivity 99.08%
Specificity 98.19%
Precision 98.21%
Accuracy 98.64%
F1Score 98.64%
Total parameters 8,347,460

Fig. 9: Confusion matrix for region classification

4.3 Mask Generation from Selected Region

For mask generation, we used the modified U-Net architecture, described ear-
lier. We modified the U-Net described in [12] by altering the number of blocks
and the filters. In our experiment for the selection of optimal configuration, the
training was performed for 10 epochs for each configuration. Besides, 10-fold
cross validation method was employed for its evaluation. The obtained accuracy,
IoU and dice coefficient are shown in Table 4. Despite the major reduction in
parameters, the results are very much alike. This is due to the fact that the seg-
mentation is carried out on regions that are much smaller than the entire image.
Based on these metrics from Table 4, the optimal arrangement chosen is three
blocks with no change in the number of filters. We have 8,556,353 parameters
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with this configuration. When compared to the configuration of four blocks with
half filters, the latter performs lower due to the reduced number of filters. Also,
the remaining configurations are not optimal in terms of parameter count and
performance. After selecting the optimal configuration, the model training was
performed.

Table 4: Selection of optimal configuration for modified U-Net

Blocks Filter reduced Parameters Accuracy IoU Dice score

3 By half 2,140,065 96.74% 92.61% 96.15%
3 No 8,556,353 97.73% 94.86% 97.35%
4 By half 8,629,921 97.69% 94.68% 97.25%
4 No 34,512,193 98.29% 96.16% 98.03%

In the training phase of the mask generation process, all 673 MRI images are
used. Data augmentation is applied to generate a total of 10,768 region masks,
from which 80% is utilized for actual training and the other 20% is used for
validation. The following performance parameters are used for evaluating the
modified U-Net:

IoU =
Area of overlap

Area of union
(6)

Dice coefficient =
2 ∗Area of overlap

Total area combined
(7)

Table 5: Training parameters for mask generation

Training parameter Value

Learning rate 0.00001
Mini batch size 8
Data augmentation Rotation & sclaing
Learning algorithm ADAM
Epochs 100

The training parameters for mask generation are depicted in Table 5. From Fig.
10, it is clear that the training accuracy is low at the beginning, but it gradually
increases with each iteration. The model went through training for a total of 100



12 Ananta Raha, Farjana Parvin, and Tasmia Jannat

epochs. The final validation accuracy is 97.11% and validation loss is 0.0708.
Following training, the model was evaluated using test MRI images, and the
results obtained are shown in Table 6. The updated model performed effectively
on the segmentation task despite having a smaller number of trainable parame-
ters. These performance values were calculated here considering the small region
masks only. Later, for comparison, performance values were calculated from the
complete image masks generated by the output of our proposed architecture.

Fig. 10: Accuracy and loss curve for mask generator

Table 6: Obtained result for mask generation

Parameter Obtained value

Accuracy 95.17%
Mean IoU 93.01%
Mean Dice Score 96.37%
Total parameters 8,556,353

4.4 Performance Evaluation of the Complete Architecture

The complete architecture was tested against U-Net [12]. The original version
performed perfectly, reaching 99.88% validation accuracy when we stopped train-
ing. Using the 35 randomly selected MRI images for testing, we evaluated our
architecture with this model which produced 35 output masks. The results ac-
quired from the test are provided in Table 7. It demonstrates that the accuracy
of our proposed method is comparable to that of the original U-Net model. In
terms of IoU and Dice Score, our proposed method outperformed it. Accord-
ing to the results, the number of total parameters in our proposed method is
approximately half of those in the original U-net for this problem. However, it
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Table 7: Result comparison between original U-Net and proposed architecture

Parameter U-Net Proposed method

Accuracy 99.79% 99.78%
Mean IoU 87.48% 89.76%
Mean Dice Score 93.11% 94.53%
Total parameters 34,512,193 16,903,813

performed well despite this decrease in the number of parameters. Because only
the selected region is segmented, whose area is significantly smaller than the en-
tire image. Therefore, our proposed approach is more efficient and less complex.
Table 8 shows three photographs randomly picked from the 35 test images, along
with their parameters and outputs generated by our proposed method.

Table 8: Segmentation result from proposed method

MRI sample IoU Dice score True mask Generated mask

Sample 1 94.00% 96.91%

Sample 2 96.08% 98.00%

Sample 3 94.46% 97.15%
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5 Conclusion

In this study, we presented a technique for efficient segmentation of Brain Tu-
mor MRI images that generates a mask to separate the tumor area from the
background. At first, our proposed method predicts and chooses the optimal
tumor-containing region. The modified U-Net is then used to accomplish effi-
cient and fast segmentation on the selected region. It is apparent that despite
the reduced parameters, a comparable performance can be achieved using this
region-only segmentation approach.

In terms of performance metrics, the system is likewise comparable to exist-
ing architectures. However, it has one drawback: the entire design requires two
separate training processes for the region selector and mask generator, which
is expensive. Furthermore, the regions are generated using a selective search
algorithm, which takes a bit of time. With this minor tradeoff, the proposed
approach performs admirably, as illustrated in 8. The results can be optimized
further by using different lightweight segmentation models in the mask generator
part, which has been kept for future improvement of this work.

In terms of complexity, the entire architecture is minimal. It is low-complex
because it has a total of 16,903,813 parameters which is around half of the to-
tal parameters seen in the original U-Net design for this specific problem. But it
shows comparable performance. Therefore, the proposed approach meets our pri-
mary goal of reducing the number of parameters while maintaining comparable
performance.
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